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Inflatable dams are flexible, cylindrical structures anchored to a foundation. The
three-dimensional vibrational behavior of single-anchor inflatable dams with fins is
analyzed, both in the absence of water and in the presence of stationary or parallel flowing
water. The dam is modelled as an elastic shell inflated with air and resting on a rigid
foundation. The internal pressure is increased slowly until it reaches the desired value. Then
the external water is applied and the equilibrium configuration is obtained. Small vibrations
about this configuration are considered. The external water is assumed to be inviscid and
incompressible, and potential theory is used. The infinite-frequency limit is assumed on the
free surface. A boundary element technique is utilized to determine the behavior of the
water, and the finite element method is applied to model the structure. Vibration
frequencies and mode shapes are computed. The effects of the internal pressure, external
water head, and parallel flow velocity on the vibrations of the dam are investigated, and
the results are compared to those for the dam in the absence of external water.
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1. INTRODUCTION

Inflatable dams are flexible structures attached to a rigid base. They were initially
developed by N. M. Imbertson of the Los Angeles Department of Water and Power in
the 1950s [1]. Since then, over 2000 inflatable dams have been constructed. A review of
published work involving such dams is given in reference [2], and additional publications
include references [3–18]. A recent project in Arizona is described on the internet at
http://www.tempe.gov/rio/dams.htm.

Most inflatable dams are made of a nylon-reinforced polymer. Their heights range up
to 6 m and their lengths may reach 150 m. They are usually inflated with air, but can also
be filled with water or a combination of air and water. Inflatable dams have been utilized
to divert water for irrigation [18] or groundwater recharging [12], impound water for
recreational purposes, raise the height of existing dams, prevent beach erosion, control
water flow for hydroelectric production [16], and mitigate flooding by allowing excess
water to flow over the deflated dam [18]. They have the potential to be used as temporary
dikes or levees to protect buildings and metropolitan areas from flood waters. Although
many of these dams are permanently inflated, they have the advantage that they can be
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deflated and lie flat when not needed, and then inflated in a short period of time when
required.

Early inflatable dams were anchored along two generators. The vibrations of such
double-anchor dams were analyzed in references [2, 14, 17]. Hsieh and Plaut [2] modelled
the dam as a long cylindrical membrane and carried out a two-dimensional analysis. The
dam was filled with water, and external water was impounded (i.e. held back) on one side.
It was assumed that the water was incompressible and inviscid, with hydrodynamic
pressures acting on the membrane in the normal direction. The weight of the membrane
was neglected in the determination of the equilibrium shape, membrane extensibility was
not included, and the influence of damping was ignored. Modes and frequencies of small,
free vibrations were determined. The effects of the membrane density, upstream head, and
internal head on the vibration frequencies were examined.

Dakshina Moorthy et al. [14] investigated three-dimensional vibrations of an inflatable
dam impounding water. The dam was modelled as a shell with internal air pressure, and
the finite element method was applied to both the structure and the external water. Several
water depths were considered. The equilibrium shape of the dam was computed first, and
then small vibrations about this shape were analyzed. The effect of the water depth on the
vibration frequencies and modes was studied.

Steady-state overflow of an inflatable dam was treated by Wu and Plaut [17]. The dam
was assumed to be an inextensible air-inflated membrane. The fluid flow was assumed to
be incompressible, inviscid, and irrotational, with specified total upstream head. First the
steady-state shapes of the dam and the free surface of the water were computed. Then
linear vibrations of the structure about its steady-state configuration were analyzed. As
in reference [2], the dam was discretized using the finite difference method, whereas the
boundary element method was applied to the fluid. Frequencies and modes were obtained,
and the effects of the dam density and damping were investigated.

Most recently-built inflatable dams utilize a single-anchor system, rather than a
double-anchor one. The dynamic behavior of such dams has not been analyzed previously,
and is the subject of the present paper. In a common type of construction, a thick sheet
of reinforced rubber is slit into two sheets of half the thickness, except for a strip near
one edge. Then the top and bottom sheets at the opposite edge are clamped to the
foundation, and the side edges are sealed. Air is pumped between the two sheets, and the

Figure 1. Schematic diagram illustrating the boundary value domain.
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Figure 2. A shell finite element.

upper sheet and part of the lower sheet raise off the foundation. The raised edge that was
not slit looks like a fin, as shown in Figure 1.

The inflated dam is modelled as a shell in this study. The finite element method is used
to discretize the dam, and the boundary element method is applied to the fluid. The
vibrations of the dam in the presence of both external stationary water and parallel flow
are considered. Vibrations of shells in contact with external water have been investigated
extensively for other geometrical configurations (e.g. cylindrical and spherical shells).
References [19–21] are a few of those works. Papers utilizing the finite element method for
the structure and the boundary element method for the fluid include references [22, 23] and
others listed in reference [24].

The paper is organized as follows. In section 2, model information and procedures for
obtaining equilibrium configurations are discussed. In section 3, the linear vibration
problem is formulated and the expression for the added mass matrix is derived. Vibration
results for the first four modes are presented and discussed in section 4, and concluding
remarks are given in section 5.

2. EQUILIBRIUM SHAPES

The dam is modelled as a thin, isotropic, elastic shell and is analyzed using the finite
element method. The finite element package ABAQUS is used for performing the static
and dynamic analysis. A four-node shell element (the S4R element in ABAQUS [25]) is
adopted, which has been developed under the assumptions of large deflections, large
rotations, and small strains. Each node of the element has six generalized displacements,
u, v, w, u1, u2, u3, with a total of 24 degrees of freedom per element (Figure 2). The surface
on which the dam rests is modelled as a rigid surface. A four-node rigid element (the R3D4
element in ABAQUS) is used to model the surface. The boundary conditions are such that
there are no deflections or rotations at the anchor line and at the rigid surface.

The equilibrium shapes are obtained numerically. ABAQUS uses Newton’s method as
a numerical technique for solving the nonlinear equilibrium equations [25]. The basic idea
is to reduce the set of nonlinear equations into a set of linear equations by choosing to
solve the equilibrium equations at ‘‘small’’ increments, the size of which depends upon the
non-linearity of the problem.

The dam is assumed to have negligible weight and a constant internal pressure. External
fluid on one side of the dam exerts hydrostatic pressure (Figure 1). Initially, the dam is
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Figure 3. Cross-sectional equilibrium shapes of the dam (at the center) without external water at different
internal pressures. (1) pint = 0·5 kPa; (2) pint = 1·0 kPa; (3) pint = 5·0 kPa; (4) pint = 10 kPa; (5) pint = 20 kPa; (6)
pint = 30 kPa.

assumed to lie flat. The internal pressure is then gradually increased until it has the desired
value. Then the ends are fixed and the external fluid is added at the anchored side of the
dam, with its height less than the ‘‘dry’’ equilibrium height of the dam. The density of the
fluid is gradually increased from zero to the density of the water (1000 kg/m3), and the
equilibrium shape is obtained.

The finite-length dam is modelled using 1500 elements, with 50 circumferential elements.
For all the numerical examples in this paper, the modulus of elasticity of the dam is
0·1038 GPa, the density is 1005 kg/m3, Poisson’s ratio is 0·3, the thickness is 12·7 mm, the
dam length is 30 m, and the cross-sectional perimeter is 9·14 m. The internal pressures are

Figure 4. Cross-sectional equilibrium shapes of the dam (at the center) with different water levels, for
pint = 30 kPa.
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Figure 5. Equilibrium shapes of the dam, (a) without water, (b) with water, for pint = 1 kPa.

varied between 0·5 kPa and 30 kPa. Figure 3 shows the cross-sectional equilibrium shapes
at the center of the dam without external water, at different internal pressures. The change
in the equilibrium shape with internal pressure is more pronounced for the lower pressures
(i.e. from 0·5 kPa to 5 kPa) while the shape tends to become almost circular as the internal
pressure is increased. Figure 4 depicts the change in the cross-sectional equilibrium shape
at the center of the dam with increasing water level, for an internal pressure of 30 kPa.
Figures 5 and 6 illustrate the three-dimensional equilibrium shapes of the dam without and
with external water for internal pressures of 1 kPa and 30 kPa, respectively. In Figures 5(a)
and 6(a) the height of the center of the dam is 2·4 m and 3·0 m, respectively, and in Figures
5(b) and 6(b) the height of the external water is 0·5 m and 1·5 m, respectively. The external
water tends to push the dam towards the right.

Figure 6. Equilibrium shapes of the dam, (a) without water, (b) with water, for pint = 30 kPa.
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Figure 7. Variation of frequencies with internal pressure, without water.

3. LINEAR VIBRATIONS: FORMULATION

3.1.   

The matrix equation of motion of an inflated dam for small motions about its
equilibrium position has the form

MÜ+KU=0, (1)

where U represents the vector of global nodal displacements and M and K are the global
mass and stiffness matrices, respectively, of the dam at its equilibrium position. All the
matrices in equation (1) are real and symmetric. Standard procedures are used by
ABAQUS to obtain the eigenvalues and eigenvectors for simple harmonic motion, and
hence the vibration frequencies and modes.

3.2.   

In this case, the matrix equation of the dam for small motions about its equilibrium
position takes the form

MÜ+KU=R, (2)

T 1

Natural frequencies (rad/s) of the inflatable dam

pint = 1 kPa pint = 30 kPa
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

With With
Mode Without hydrostatic With Without hydrostatic With
no. water pressure water water pressure water

1 2·169 2·512 2·108 5·943 7·151 6·310
2 7·775 8·785 7·401 33·32 38·58 30·87
3 13·49 14·71 12·42 60·67 67·27 53·82
4 19·14 20·91 17·43 84·91 92·66 74·12
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Figure 8. First four vibration modes without external water, for pint = 1 kPa. (a) Mode 1; (b) mode 2; (c) mode
3; (d) mode 4.

where R is the global force vector acting on the dam due to p, which is the change in total
pressure of the water due to small motions of the dam about its equilibrium position and
due to the external flow of water, with velocity Up , parallel to the dam. The fluid flow is
assumed to be inviscid and irrotational and the fluid is assumed to be incompressible so
that the fluid velocities are given by V=9f where f is a velocity potential. Equation (2)
defines a typical fluid–structure interaction problem. Several approaches have been
proposed to solve such problems. In the present study, we use the ‘‘dry’’ mode shape
functions cj (x) [mode shapes obtained after considering the hydrostatic pressure effects but
not the dynamic effects of the water (e.g. added mass)] as a basis to define the ‘‘wet’’ modes.
Here, x=(x, y, z). Let cj (x) have Cartesian components (uj , vj , wj ). Then the displacement
of an arbitrary point on the surface of the dam, due to the corresponding mode, can be
written as jj (t)cj (x) where jj (t) is the time-dependent amplitude for mode j. The body
surface region Sb is defined as that part of the structure in contact with the external
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hydrostatic water (Figure 1). The normal component of cj (x) on Sb is expressed in the form
[26]

nj =cj · n= ujnx + vjny +wjnz . (3)

The unit normal vector n points out of the fluid domain and into the body. Corresponding
to these modes of motion, the generalized pressure forces are defined in the form [26]

Rj =g gSb

pnj dS. (4)

In the present analysis, wave and structural damping effects are neglected, and only the
added mass effect is considered. In order to determine the added mass, we need to
determine the fluid motion associated with the vibration of the structure. An xyz
coordinate frame is used, with the z axis pointing vertically upwards and the xy plane
coinciding with the undisturbed free surface. We denote the wetted surface of the structure
by Sb and the fluid domain by D. We assume that the fluid is bounded by Sb , the bottom
Sh , the free surface Sf , two side surfaces Ss , and a surface Sa far away from the structure
(Figure 1). The distance from Sa to the structure is taken to be approximately 40 m. It
was found that for this distance the boundary condition on Sa does not influence the
numerical results.

Figure 9. Cross sections of the modes in Figure 8 at the center (——) and at quarter lengths from the ends
(– – –). (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.
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Figure 10. First four vibration modes without external water, for pint = 30 kPa. (a) Mode 1; (b) mode 2; (c)
mode 3; (d) mode 4.

Assuming time–harmonic motion at frequency vj , the amplitude jj (t) for each mode can
be written as the real part of j
 j eivj t (no summation convention is used). The total velocity
potential can be written as

f= s
j

jj (t)fj (x). (5)

In the fluid domain, each velocity potential satisfies the Laplace equation

92fj =0. (6)

Assuming that the frequency of oscillation is high, the free-surface boundary condition
reduces to the infinite-frequency limit of

fj =0. (7)
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In this case, no waves are generated by the free surface. The velocity potentials on Sb must
satisfy the boundary condition that the velocity of the fluid on the dam is equal to that
of the dam, i.e.

1fj

1n
=(Vn )j =Up

1nj

1y
+ ivjnj , (8)

and those on the bottom surface Sh , the two side surfaces Ss , and the surface Sa must
satisfy the no penetration condition

1fj

1n
=0. (9)

The velocity potentials are found using a boundary integral method. Following Hess and
Smith [27], who were the first to develop the method to a practical stage, Green’s theorem
with an appropriate Green’s function is used to reduce the problem to solving an integral
equation on the fluid boundaries. We define a Green’s function G consisting of a Rankine
source minus its image above the free surface. We write

G(x, x)=
1
r
−

1
r'

, (10)

Figure 11. Cross sections of the modes in Figure 10 at the center (——) and at quarter lengths from the ends
(– – –). (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.
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Figure 12. Variation of frequencies with external water head, for pint = 30 kPa.

where x=(x, y, z) is the field point, x=(x, h, z) is the source point,
r2 = (x− x)2 + (y− h)2 + (z− z)2 and (r')2 = (x− x)2 + (y− h)2 + (z+ z)2. Application
of Green’s second identity provides a Fredholm equation of the second kind for the values
of the potential on the boundaries:

fj (x)+g g1D

fj (x)
1G(x, x)

1nx

dSx =g g1D

Vnj (x)G(x, x) dSx. (11)

The fluid boundary 1D consists of the body boundary Sb , the bottom Sh , two side surfaces
Ss , and the surface Sa. The free surface Sf is not discretized since the Green’s function
G satisfies the free-surface condition.

The integral equation (11) is solved numerically by replacing the body surface region
Sb , the bottom Sh , and the surface Sa by an ensemble of quadrilateral elements of constant
potential strength. In this study, 300 panels were used on Sb , 55 on each Ss , and 60 on
Sa. The results were found to be unaffected by the number of panels if more were used.
Then the integral equation is satisfied at a set of collocation points (in this study the panel
centroids are used), resulting in a linear system of equations for the unknown potential
values. From the values of the velocity potentials on the body surface, the pressure on the
dam and hence the added mass values may be obtained by using the standard definitions
:

pj =−$irvjfj + rUp
1fj

1y% eivj t. (12)

Substituting the expression for pressure pj in equation (4), we get

Ri = r eivj t g gSb
$−ivjfj −Up

1fj

1y%ni dS. (13)
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But Ri can be expressed as

Ri =−Mijj� j −Bijj� j . (14)

Replacing jj (t) by j
 j eivj t, we get

Ri =[v2
j Mij − ivjBij ]j
 j eivj t. (15)

By comparing equations (13) and (15), we get

(MA )ij −
i
vj

Bij =−
ir
vj g gSb

fjni dS−
rUp

v2
j g gSb

1fj

1y
ni dS. (16)

The change in pressure acts as additional inertia on the structure. Thus equation (2) now
becomes

(Mg +MA )j� +Bj� +Kgj=0, (17)

Figure 13. First four vibration modes with external water, for pint = 1 kPa. (a) Mode 1; (b) mode 2; (c) mode
3; (d) mode 4.
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Figure 14. Cross sections of the modes in Figure 13 at the center (——) and at quarter lengths from the ends
(– – –). (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

where Mg and Kg are the generalized mass and stiffness matrices, respectively, of the dam
at its equilibrium position, MA is the added mass matrix of the structure, and B is the
damping matrix of the structure. The matrices Mg and Kg are of dimension equal to the
number of modes and obtained from ABAQUS. All the matrices in equation (17) are real
and symmetric. In the present study the values of the damping coefficients were found to
be small compared to the other values in equation (17). This should be expected since in
the infinite-frequency limit, no waves are generated on the free surface and hence there
is no wave damping. Replacing j(t) by j
 eivt and neglecting damping, we can rewrite
equation (17) as

[−v2(Mg +MA )+Kg ]j
 =0. (18)

Standard procedures can be utilized to solve the above eigenvalue problem to obtain the
new natural frequencies and the eigenvectors. The eigenvectors can then be used along with
the ‘‘dry’’ mode shapes to obtain the ‘‘wet’’ mode shapes.

4. LINEAR VIBRATIONS: RESULTS

4.1.  

To validate the procedure adopted to compute the natural frequencies of the structure
with or without external water, two example cases are chosen. In the first example, a long
circular cylindrical shell of length 80 m and radius 1 m is considered. First, the structure
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is assumed to vibrate in air. The structure is assumed to be pinned at the ends and
is restrained so as to allow vibrations only in a plane. The structure is modelled as a
shell using 128 quadrilateral shell elements of the type S4R in ABAQUS, and the first
four natural modes and frequencies of vibration are obtained. The length is much
larger than the radius so that the numerical results should be close to the analytical
results for a pinned-pinned beam. As is well known, the natural frequencies and mode
shapes of a pinned-pinned beam are given by

vn =
n2p2

L2 zEI/m, yn =sin 0npx
L 1, (19, 20)

where L is the length, EI is the bending stiffness, and m is the mass per unit length of the
beam.

The frequencies and mode shapes obtained numerically are in close agreement with those
obtained from equations (19) and (20). The cylinder is then assumed to be completely

Figure 15. First four vibration modes with external water, for pint = 30 kPa. (a) Mode 1; (b) mode 2; (c) mode
3; (d) mode 4.
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Figure 16. Cross sections of the modes in Figure 15 at the center (——) and at quarter lengths from the ends
(– – –). (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

submerged in water far away from the free surface so that free surface effects are not
important. Because the length of the structure is much greater than its diameter, strip
theory can be used to obtain the added mass coefficients for the first four mode shapes
analytically. The vibration frequencies of the structure completely submerged in water are
obtained by using Rayleigh’s quotient:

v2
n =

gL

EI0d2yn

dx21
2

dx

gL

(m+mA )y2
n dx

, (21)

T 2

Natural frequencies (rad/s) of the dam with parallel flow, for pint =1 kPa

Mode No. Without water With water U=1·0 m/s U=5·0 m/s

1 2·169 2·108 2·011 1·995
2 7·775 7·401 7·105 6·956
3 13·49 12·42 11·99 11·55
4 19·14 17·43 16·47 16·03
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T 3

Natural frequencies (rad/s) of the dam with parallel flow, for pint =30 kPa

Mode No. Without water With water U=1·0 m/s U=5·0 m/s

1 5·943 6·311 6·241 6·188
2 33·32 30·87 29·98 29·56
3 60·67 53·82 52·61 51·98
4 84·91 74·12 72·81 70·32

where yn is the mode shape and mA = rpR2, the sectional added mass of a 2-D cylinder.
Here, r is the density of the water. The mode shapes yn are given by equation (20).

Numerical values for the added mass coefficients and the natural frequencies are then
obtained using the procedure discussed in section 3. A total of 256 panels (128 on the
cylindrical surface and 64 each on the two ends of the cylinder) are used to discretize the
body surface. The added mass values obtained numerically are in close agreement with
those obtained by using strip theory and the numerical values of the natural frequencies
closely match those obtained from equation (21).

In the second example, the procedure is applied to compute the first four vibration
modes and frequencies of the double-anchored inflatable dam which was considered in
reference [14]. The vibration frequencies and mode shapes of the dam both in the presence
and absence of external water are computed. The vibration frequencies and mode shapes
obtained are in close agreement with those obtained in reference [14]. The maximum
difference in the first four frequencies is 10% without water and 11% with water.

4.2.  

4.2.1. Without external water
Consider dams that are not impounding water. For the vibration analysis the dam is

clamped at the ends once the equilibrium shape is obtained. Small three-dimensional
vibrations are then considered about the equilibrium configuration.

Fifteen modes are used . Results for the first four vibration frequencies and mode shapes
are presented in Figures 7–11. Figure 7 shows the variation of the frequencies with internal
pressure for the first four vibration modes, and Table 1 lists the corresponding frequencies
for pint = 1 kPa and 30 kPa. The slopes of the curves in Figure 7 decrease as the internal
pressure increases. The vibration frequencies increase with the internal pressure, as one
would expect. The squares of the frequencies vary almost linearly with the internal
pressure. Figures 8 and 10 depict the first four vibration mode shapes for internal pressures
of 1 kPa and 30 kPa, respectively. The first and second modes are symmetric and the third
and fourth modes are anti-symmetric longitudinally. The corresponding profiles of the
central cross-section for these modes (solid curves) and the cross-sections at a distance of
one-quarter length from each end (dashed curves) are illustrated in Figures 9 and 11 for
internal pressures of 1 kPa and 30 kPa, respectively. For the modes that are symmetric
longitudinally, the two dashed curves are identical.

4.2.2. With external water
For the case of the dam impounding water on one side, the dam is clamped along the

equilibrium cross-sections at its two ends, and then water is applied on the anchored side
with a height less than the ‘‘dry’’ equilibrium height. The new equilibrium configuration
is obtained and small vibrations of the dam about this equilibrium shape are analyzed.



(a) (b)

(c) (d)

  267

The results are presented in Figures 12–16. Figure 12 depicts the variation of the first four
frequencies with the external water head, for an internal pressure pint = 30 kPa. The
frequencies tend to decrease first and then increase as the external water head increases.
The frequencies for the higher modes (modes 3 and 4) show more variation compared to
those for the lower modes (modes 1 and 2). Table 1 compares the vibration frequencies
of the dam with no external water to those for the dam in the presence of external
hydrostatic water, for pint = 1 kPa and 30 kPa. The external water head is 0·5 m and 1·5 m,
respectively.

The corresponding first four modes are depicted in Figures 13 and 15, respectively. The
frequencies of the structure in the presence of water are lower than those in the absence
of water by a maximum of 11·3% in Table 1. The first and second modes are symmetric
and the third and fourth modes are anti-symmetric longitudinally. Figures 14 and 16 show
the cross-sectional behavior of the modes at the half-length (solid curves) and
quarter-lengths (dashed curves) from each end of the dam for internal pressures of 1 kPa
and 30 kPa, respectively. In Figures 14 and 16, the horizontal line at the left of the dam
indicates the water height. For the first two modes the two dashed curves are identical.

Figure 17. First four vibration modes with parallel flow of 5 m/s, for pint = 1 kPa. (a) Mode 1; (b) mode 2;
(c) mode 3; (d) mode 4.
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Figure 18. Cross sections of the modes in Figure 17 at the center (——) and at quarter-lengths from the ends
(– – –). (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

The cross-sectional behavior of the dam in the presence of external water, at half-length
and quarter-lengths from the ends, is similar to that of the dam in the absence of water
for both the internal pressures.

4.2.3. With parallel flowing water
The case of external water flowing parallel to the dam is considered. This situation may

occur for a dam deployed along a river. In this case, the dam is clamped along the
equilibrium cross-sections at its two ends, and then parallel flowing water is applied on
the anchored side with the same height as that in the case of hydrostatic water (section
4.2.1). The equilibrium configuration is the same as that obtained for the case of the dam
impounding hydrostatic water. Small vibrations of the dam about this equilibrium shape
are analyzed. The direction of the flow is from the nearer end to the farther end along
the length of the dam in Figures 17 and 19. The flow introduces hydrodynamic pressure
and thus the boundary conditions on the structure change due to the fluid–structure
interaction.

The vibration analysis was performed for internal pressures of 1 kPa and 30 kPa, as in
the earlier cases. Flow velocities of 1 m/s and 5 m/s were considered. The natural
frequencies and the corresponding mode shapes were obtained using the procedures
described in section 3.2. The frequencies of vibration for the dam with internal pressures
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of 1 kPa and 30 kPa are presented in Tables 2 and 3, respectively, and they are reduced
by a maximum of 16·4% and 17·2%, respectively.

For the dam with internal pressure of 1 kPa, Figures 17 and 18 depict the mode shapes
for a flow velocity of 5 m/s. Figure 18 illustrates the corresponding cross-sectional shapes
at the center and quarter lengths from the ends of the dam. Figures 19 and 20 correspond
to an internal pressure of 30 kPa and the same flow velocity. The mode shapes for a flow
velocity of 1 m/s are similar to those shown.

5. CONCLUDING REMARKS

Vibrations of double-anchor inflatable dams impounding water on one side have been
investigated previously [2, 14]. Most of the dams built today are single-anchored and have
fins to facilitate smooth overflow. Therefore this type of dam was modelled here. The dam
was assumed to rest on a rigid foundation.

Figure 19. First four vibration modes with parallel flow of 5 m/s, for pint = 30 kPa. (a) Mode 1; (b) mode 2;
(c) mode 3; (d) mode 4.
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Figure 20. Cross sections of the modes in Figure 19 at the center (——) and at quarter-lengths from the ends
(– – –). (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

First the equilibrium shape was determined. Then small vibrations of the dam about
the equilibrium configuration were studied. The lowest four vibration frequencies and
corresponding mode shapes were computed. The frequencies are in the same range as those
found for a double-anchor inflatable dam [14]. The case of a dam without external water
was treated for comparison purposes.

In the vibration results, the length of the dam was about ten times its height, and the
ends were fixed. The height of the external water was less than one-half the height of the
dam. Some of the mode shapes are symmetric in the longitudinal direction and the others
are anti-symmetric.

The rigid foundation tends to increase the frequencies. The presence of impounded water
tends to lower the frequencies, as one would expect. The vibration frequencies of the dam
impounding water were compared to those of the dam without external water. The
vibration frequencies listed in Table 1 are reduced by up to 11·3% when the external water
is present.

Finally, the case of the dam impounding water flowing parallel to the dam is considered.
The flow pushes the dam further to the other side. The hydrodynamic pressure due to the
external parallel flow results in added inertia (i.e. added mass) which tends to reduce the
vibration frequencies of the dam. The reduction depends upon the internal pressure,
external water head, and flow velocity. In this study, vibration results of the dam
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corresponding to flow velocities of 1 m/s and 5 m/s are presented. In the two cases
considered, the frequencies reduce by a maximum of 17·2% as compared to the frequencies
of the dam without any external water. The changes in the equilibrium configuration and
other factors such as added mass cause the changes in the mode shapes and frequencies
of the dam.
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